Machine Learning for APT Detection
نویسندگان
چکیده
Nowadays, countries face a multitude of electronic threats that have permeated almost all business sectors, be it private corporations or public institutions. Among these threats, advanced persistent (APTs) stand out as well-known example. APTs are highly sophisticated and stealthy computer network attacks meticulously designed to gain unauthorized access persist undetected within targeted networks for extended periods. They represent formidable cybersecurity challenge governments, corporations, individuals alike. Recognizing the gravity one most critical this study aims reach deeper understanding their nature propose multi-stage framework automated APT detection leveraging time series data. Unlike previous models, proposed approach has capability detect real-time based on stored attack scenarios. This conducts an extensive review existing research, identifying its strengths, weaknesses, opportunities improvement. Furthermore, standardized techniques been enhanced enhance effectiveness in detecting attacks. The learning process relies datasets sourced from various channels, including journal logs, traceability audits, systems monitoring statistics. Subsequently, efficient prevention system, known composition-based decision tree (CDT), developed operate complex environments. obtained results demonstrate consistently outperforms algorithms terms accuracy effectiveess.
منابع مشابه
A Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملMachine Learning for Intrusion Detection
Detection of unknown attacks in network traffic is gaining increasing importance as modern attacks are characterized by high variabilities and mutation rates. Traditional signature-based intrusion detection systems (IDS) are not able to detect unknown attacks due to failing availability of appropriate signatures. We present an alternative approach based on machine learning techniques which enab...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2023
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su151813820